Nuprl Lemma : es-pstar-q-partition
0,22
postcript
pdf
es
:ES,
e1
,
e2
,
b
:E,
Q
,
P
:({
e
:E| loc(
e
) = loc(
e1
)
Id }
{
e
:E| loc(
e
) = loc(
e1
)
Id }
Prop).
(
e1
<loc
b
)
b
e2
[
e1
;pred(
b
)]~([
a
,
b
].
P
(
a
,
b
))*[
a
,
b
].
P
(
a
,
b
)
[
b
;
e2
]~([
a
,
b
].
P
(
a
,
b
))*[
a
,
b
].
Q
(
a
,
b
)
[
e1
;
e2
]~([
a
,
b
].
P
(
a
,
b
))*[
a
,
b
].
Q
(
a
,
b
)
latex
Definitions
x
:
A
.
B
(
x
)
,
Prop
,
P
Q
,
[
e1
;
e2
]~([
a
,
b
].
p
(
a
;
b
))*[
a
,
b
].
q
(
a
;
b
)
,
x
(
s1
,
s2
)
,
x
:
A
.
B
(
x
)
,
t
T
,
x
,
y
.
t
(
x
;
y
)
,
{
i
..
j
}
,
if
b
t
else
f
fi
,
i
j
<
k
,
true
,
P
Q
,
P
&
Q
,
P
Q
,
false
,
T
,
True
,
SQType(
T
)
,
{
T
}
,
A
B
,
A
,
False
,
A
&
B
,
(
e
<loc
e'
)
,
,
,
Unit
,
Lemmas
es-pstar-q
wf
,
es-le-loc
,
es-loc-pred
,
es-locl-iff
,
Id
wf
,
es-loc
wf
,
subtype
rel
self
,
es-E
wf
,
es-pred
wf
,
es-le
wf
,
es-locl
wf
,
event
system
wf
,
lt
int
wf
,
bool
wf
,
iff
transitivity
,
assert
wf
,
eqtt
to
assert
,
assert
of
lt
int
,
le
wf
,
le
int
wf
,
bnot
wf
,
eqff
to
assert
,
squash
wf
,
true
wf
,
bnot
of
lt
int
,
assert
of
le
int
,
Id
sq
,
int
seg
wf
,
int
seg
properties
,
es-le-trans2
,
es-pred-locl
,
not
wf
,
es-first
wf
origin